INTRODUCTION: The citric acid cycle,also known as the tricarboxylic acid (TCA) cycle or the Krebs cycle is a series of chemical reactions used by all aerobic organisms to generate energy through the oxidation of acetyl-CoA derived from carbohydrates, fats and proteins into carbon dioxide and chemical energy in the form of guanosine triphosphate (GTP)[carbohydrates] [proteins] [carbondioxide] [nucleotides]
Pyruvate + CoASH + NAD+→ Acetyl-CoA + NADH + CO2
The product of this reaction, acetyl-CoA, is the starting point for the citric acid cycle. Acetyl-CoA may also be obtained from the oxidation of fatty acids. Below is a schematic outline of the cycle:
(1) The citric acid cycle begins with the transfer of a two-carbon acetyl group from acetyl-CoA to the four-carbon acceptor compound (oxaloacetate) to form a six-carbon compound (citrate).
(2) The citrate then goes through a series of chemical transformations, losing two carboxyl groups as CO2. The carbons lost as CO2 originate from what was oxaloacetate, not directly from acetyl-CoA. The carbons donated by acetyl-CoA become part of the oxaloacetate carbon backbone after the first turn of the citric acid cycle. Loss of the acetyl-CoA-donated carbons as CO2 requires several turns of the citric acid cycle. However, because of the role of the citric acid cycle in anabolism, they might not be lost, since many TCA cycle intermediates are also used as precursors for the biosynthesis of other molecules.
(3) Most of the energy made available by the oxidative steps of the cycle is transferred as energy-rich electrons to NAD+, forming NADH. For each acetyl group that enters the citric acid cycle, three molecules of NADH are produced.
(4) Electrons are also transferred to the electron acceptor Q, forming QH2.
(5) At the end of each cycle, the four-carbon oxaloacetate has been regenerated, and the cycle continues.
RELATED;
2. GLUCAGON
3. GLYCOGEN
4. BIOCHEMISTRY
No comments:
Post a Comment